黄晓霖
Xiaolin Huang
副教授
Email: xiaolinhuang@sjtu.edu.cn
教育背景
2002-2006 西安交通大学,学士
2006-2012 清华大学,博士
工作经历
2012-2015 比利时鲁汶大学(KU Leuven),博士后
2015-2016 德国埃尔朗根-纽伦堡大学(FAU),洪堡学者
2016-至今 上海交通大学电子信息与电气工程学院,副教授
研究方向
机器学习理论
机器学习算法及应用
科研项目
入选国家特聘专家(青年项目),主持国家自然科学基金面上项目、青年项目以及JWKJW专项、华为、国家电网等项目,参与科技部国家重点研发计划重大专项、上海科委重大项目
代表性论文专著
F. Liu*, X. Huang*, Y. Chen, J.A.K. Suykens: Towards a unified quadrature framework for large-scale kernel machines, IEEE Transactions on Pattern Analysis and Machine Intelligence, in press.
W. Liu, P. Zhang, Y. Lei, X. Huang*, J. Yang*, M. Ng: A generalized framework for edge-preserving and structure-preserving image smoothing, IEEE Transactions on Pattern Analysis and Machine Intelligence, in press
F. Liu*, X. Huang*, Y. Chen, J.A.K. Suykens: Random features for kernel approximation: A survey on algorithms, theory, and beyond, IEEE Transactions on Pattern Analysis and Machine Intelligence, in press
S. Chen, Z. He, C. Sun, J. Yang, X. Huang*: Universal adversarial attack on attention and the resulting dataset DamageNet, IEEE Transactions on Pattern Analysis and Machine Intelligence, in press
S. Tang, X. Huang*, M. Chen, C. Sun, J. Yang*: Adversarial attack Type I: cheat classifiers by significant changes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(3): 1100-1109, 2021, co-first author
F. Liu*, L. Shi, X. Huang, J. Yang*, J.A.K. Suykens: Generalization properties of hyper-RKHS and its applications, Journal of Machine Learning Research, 22: 1-38, 2021.
F. Liu, X. Huang*, C. Gong*, J. Yang, L. Li: Learning data-adaptive non-parametric kernels, Journal of Machine Learning Research, 21: 1-39, 2020.
L. Shi, X. Huang*, Y. Feng, J.A.K. Suykens: Sparse kernel regression with coefficient-based lq regularization, Journal of Machine Learning Research, 161: 1-44, 2019.
X. Huang*, L. Shi, J.A.K. Suykens: Ramp loss linear programming support vector machine, Journal of Machine Learning Research, 15: 2185-2211, 2014.
X. Huang*, L. Shi, J.A.K. Suykens: Support vector machine classifier with pinball loss, IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(5): 984-997, 2014.